ARPES studies of the model cuprate HgBa2CuO4+d (Hg1201)

When
Location
PAN 110
Who
Inna Vishik, UC Davis
Abstract
The mechanism of high temperature superconductivity in cuprates is one of the biggest unsettled questions in physics, and big stumbling block in this mature field is the question of universal vs materials-dependent or technique-dependent behavior. HgBa2CuO4+ (Hg1201) is considered to be a model cuprate because it has a structurally-simple crystal structure and can have a relatively long electron mean free path, and as such, it is well-characterized by transport and scattering experiments. However, few angle-resolved photoemission spectroscopy (ARPES) experiments have been performed on this material thus far, even though this technique is instrumental in highlighting critical momentum-space anisotropies in crystalline solids. I will present recent ARPES results on Hg1201, which shed light on single-particle scattering processes and electron-boson coupling, and together with a variety of complementary probes can form a coherent experimental description of a model cuprate.
Tag